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Abstract
Domain Adaptation aims at utilizing source data to establish an exact model for a related 
but different target domain. In recent years, many effective models have been proposed 
to propagate label information across domains. However, these models rely on large-scale 
labeled data in source domain and cannot handle the case where the source domain lacks 
label information. In this paper, we put forward a Graph Regularized Domain Adaptation 
(GDA) to tackle this problem. Specifically, the proposed GDA integrates graph regulariza-
tion with maximum mean discrepancy (MMD). Hence GDA enables sufficient unlabeled 
source data to facilitate knowledge transfer by utilizing the geometric property of source 
domain, simultaneously, due to the embedding of MMD, GDA can reduce source and tar-
get distribution divergency to learn a generalized classifier. Experimental results validate 
that our GDA outperforms the traditional algorithms when there are few labeled source 
samples.

Keywords Domain adaptation · Graph regularization · Maximum mean discrepancy 
(MMD) · Manifold learning · Transfer learning

1 Introduction

The high-speed growth of data from different domains has led an urgent need to ana-
lyze them through innovative methods [1]. However, many existing machine learning 
models work well under the hypothesis that the training data (i.e. source data) and test-
ing data (i.e. target data) are generated from the identical probability distribution [2]. 
Thus, traditional learning methods may be infeasible for large distribution discrepancy. 
Moreover, annotating newly-generalized data and building new models are costly and 
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time-consuming. In these cases, domain adaptation is established as an effective method 
to propagate label information from one domain (i.e. source domain) to another different 
but related domain (i.e. target domain) by reducing the distribution discrepancy [1–5].

Domain adaptation enables one to utilize established knowledge structure to a new 
scenario and it has been employed to many real applications successfully, e.g. object 
recognition [6–9] and image classification [10, 11].

Domain adaptation involves two different but related domains, i.e., source domain 
and target domain, the aim of domain adaptation is to discover a common knowledge 
structure to reduce distribution discrepancy across domains, so that source label infor-
mation can be well propagated to target domain. Recently, many useful algorithms are 
proposed, from the perspective of the target domain, these domain adaptation algo-
rithms can be roughly divided into two distinct categories, i.e. semi-supervised adapta-
tion and unsupervised adaptation.

Semi-supervised domain adaptation algorithms tackle the case where few labeled 
instances are accessible in target domain. Chen et  al. [12] proposed co-training for 
domain adaptation (CODA) to bridge two domains by slowly constructing one train-
ing set, a generalized classifier can be built based on this training set. Tzeng et al. [13] 
proposed a convolutional neural network (CNN) based adapting deep model to discover 
domain invariant representations. Zhong et al. [14] proposed an adaptive method aiming 
to decrease the distribution mismatch of domains in a kernel-mapping space. Dai et al. 
[15] proposed TrAdaBoost to train a classifier based on the weighted source samples 
and few target labeled samples.

Unsupervised domain adaptation algorithms tackle the case where no label infor-
mation is available in target domain. These methods try to discover a common feature 
structure or domain invariant representation from different domains that can link two 
domains to transfer knowledge [16]. Pan et al. [17] proposed Transfer component anal-
ysis (TCA) to discover a feature representation across different domains by minimiz-
ing predefined distribution discrepancy measurement. Tzeng et al. [18] proposed Deep 
Domain Confusion (DDC) embedding maximum mean discrepancy (MMD) [19] into a 
deep network to train an adaptable network. Tzeng et al. [20] also put forward Adversar-
ial Discriminative Domain Adaptation (ADDA) incorporating adversarial learning with 
domain adaptation. Sun et al. [21] proposed to learn a latent discriminative subspace to 
reduce cross-domain discrepancy.

Although aforementioned models have achieved promising performance, all these 
models rely on large-scale labeled source data. However, in real-life scenarios, col-
lecting large-scale labeled data or labeling newly-emerged data is expensive and time-
consuming. Thus, they fail to handle discriminative tasks where sparse label informa-
tion exists in source domain. To address the problem, we propose Graph Regularized 
Domain Adaptation (GDA) in this paper. Particularly, GDA combines two distinct 
concepts:

1. Graph regularization. Under manifold assumption, two examples should have identical 
labels if they are close in intrinsic structure of data distribution [22–24]. Data-based 
graph Laplacian is a representative graph regularization [25–27]. Integrating with graph 
Laplacian, GDA can take advantage of unlabeled source data to facilitate knowledge 
transfer.

2. Maximum mean discrepancy (MMD). MMD computes distribution discrepancy between 
two different domains [18, 28–30]. In this paper, we use MMD to measure the cross-
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domain distribution discrepancy and integrate it with graph regularization to construct 
a generalized classifier.

Generally, GDA shares part idea of unsupervised domain adaptation that no labeled 
samples are accessible in target domain, differently, only few label information is obtained 
in source domain. The main contributions of GDA include following two folds:

1. Given that labeled source data may be sparse in real-life scenarios, GDA incorporates 
graph Laplacian to take advantage of enormous unlabeled data, which is easy to obtain, 
to assist knowledge transfer across domains, therefore, GDA can reduce the dependence 
on source label information in domain adaptation.

2. GDA shares the main idea of MMD-based domain adaptation algorithms, employing 
MMD as one regularization enables GDA to learn shared knowledge across domains.

3. We carefully conduct experiments on widely-used datasets including USPS vs MNIST, 
COIL20, and Office vs Caltech-256. The experimental results confirm the validity of 
GDA in comparison with baseline works.

The subsequent paper is arranged as follows. Section 2 presents related works. Section 3 
introduces general framework of GDA. Section 4 details the implementation of GDA. Sec-
tion 5 illustrates experimental results, and Sect. 6 gives a conclusion finally.

2  Related Works

Domain adaptation is proposed to transfer knowledge information across different but 
related domains [2, 31]. Existing works that are mostly related with GDA are briefly pre-
sented as follows:

1. Distribution Adaptation: The main idea of domain adaptation is to discover a shared 
knowledge structure to link two domains [32]. The shared knowledge can be extracted 
by minimizing predefined distance measurements [33].

Cao et  al. [34] proposed a Joint Bayesian algorithm based method which combines a 
KL-divergence regularization.

where is �s source domain parameter, �t is parameter reflecting both domains, p(∗) repre-
sents the likelihood function.

Si et  al. [32] introduced a family of subspace learning algorithms based on Bergman 
divergence regularization. Mathematically, the method can be written as follows:

where W is projected subspace, F(W) is subspace learning function, DW

(
PS||PT

)
 is Berg-

man divergence regularization measuring the distance between domain distribution PS and 
PT.

However, the limitation of both methods is that they need complicated density esti-
mation, whereas MMD is a nonparametric measurement to compute distribution 

(1)min�t
−
∑
i

log p
(
Xi|�t

)
+ �

∑
i

KL
(
p
(
Xi|�t

)||p(Xi|�s

))

(2)W = argminWF(W) + �DW

(
PS||PT

)
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discrepancy in Reproducing Kernel Hilbert Space (RKHS) [19]. Given two different 
distributions p and q , observations X =

{
xi
}mp

i=1
 , Y =

{
yj
}nq

j=1
 drawn from p and q respec-

tively, MMD is used to measure the discrepancy between p and q in following form:

where F  is a class of function f  , �
[
f (⋅)

]
 represents the expectation of p or q , x and y are 

random variables with Borel probability measures p and q respectively [19].
The empirical estimate form is written as follows:

where H represents RHKS, �(⋅) represents the feature space map, i.e. � → H [35]. The 
distribution discrepancy vanishes only when MMD(X,Y) = 0.

Several methods such as DDC [18] incorporates MMD as a regularization in a deep 
network framework to learn a domain-invariant representation, and Deep Adaptation 
Network (DAN) [28] incorporates multiple kernel MMD (MK-MMD) to learn transfer-
able features, mathematically, the general model can be written as:

where Lc

(
XL, y

)
 represents the loss on source data XL with the labels y , MMD2

k

(
XS,XT

)
 

represents the distance between source data XS and target data XT , k is the number of ker-
nels, � is tradeoff parameter.

Other works including TCA [17] and Multi-Domain Transfer Component Analysis 
(Multi-TCA) [36] also employ MMD to measure domains differences, mathematically, 
the general framework can be expressed as:

where XS and XT are source and target data, W is projection matrix.

2. Geometric Property: The domain data may be sampled from a distribution supported 
by a low-dimensional manifold which shares similar properties with Euclidean space 
locally [37–39]. Recently, several works try to handle transfer learning problems by 
utilizing the geometric property of domain data [1, 40, 41].

where X∗ is data matrix, U∗ is feature cluster matrix, V∗ is instance class matrix, they are 
induced by the decomposition of X∗ , L(⋅) is reconstruction loss, h(⋅) is the prediction link, 
R
(
U∗

)
 and R

(
V∗

)
 are feature graph and instance graph regularizations respectively, � , � are 

tradeoff parameters, ∗ is either source or target domain.
Gong et al. [40] proposed geodesic flow kernel (GFK) to exploit the low-dimensional 

structure of data. GFK describes the geometric and statistical changes across domains 
by integrating infinite numbers of subspaces. Raw feature vectors are projected into 
these subspaces and can be represented in an inner form:

(3)MMD(F, p, q) ∶= sup
f∈F

(
�x∼p

[
f (x)

]
− �y∼q

[
f (y)

])

(4)MMD(X,Y) =

‖‖‖‖‖‖
1

mp

mp∑
i=1

�
(
xi
)
−

1

nq

nq∑
j=1

�
(
yj
)‖‖‖‖‖‖H

(5)L = Lc

(
XL, y

)
+ �MMD2

k

(
XS,XT

)

(6)minWMMD2
(
XS,XT ,W

)

(7)min{U∗,V∗}

∑
∗∈{S,T}

L
(
X∗, h

(
U∗,V∗
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(
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(
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where G is a positive semidefinite matrix, xi is input data, z∞
i

 is infinite-dimensional feature 
vector given by z∞

i
= �(t)Txi , and �(t) is the subspace

Wang et al. [41] proposed Manifold Embedded Distribution Alignment (MEDA) to 
learn a domain-invariant classifier in Grassmann manifold.

where g
(
xi
)
 is manifold feature learning function, �

(
f
(
g
(
xi
))
, yi

)
 is the loss of source data, 

Df

(
DS,DT

)
 represents dynamic distribution alignment, Rf

(
DS,DT

)
 is a manifold regulari-

zation to exploit the geometric property of data, � , � and � are tradeoff parameters.
Differently from these proposed works, 1) GDA focus on the case where only 

sparse source label information is available while these proposed works rely on large-
scale labeled source data. 2) GDA employs graph Laplacian to assist prior knowledge 
extraction from unlabeled source data, and MMD is employed in GDA to learn shared 
knowledge.

3  Graph Regularized Domain Adaptation

We first state the problem details in this section, and then we introduce the Graph Regu-
larized Domain Adaptation (GDA) framework.

The goal of GDA is to learn a generalized classifier f = �X . The source classifier 
cannot be directly used to predict unlabeled target data because of different distributions 
across domains. Moreover, sparse source label information cannot assure that the source 
classifier can be well generalized to target domain. Given such cases, we employ graph 
Laplacian to assist knowledge extraction from unlabeled source data, and integrating 
with MMD, shared knowledge is well extracted, i.e. we can achieve an adaptable � . The 
detailed learning process of GDA is illustrated in Fig. 1.

3.1  Problem Statement

We focus on a case where few labeled data exist in source domain and only unlabeled 
samples are accessible in target domain. We are given a source domain Dsrc of n1 exam-
ples, i.e., Xsrc =

{(
xs
i

)}n1

i=1
 . It includes l labeled source data, i.e. Xl

src
=
{(

xsl
i
, ysl

i

)}l

i=1
 

where xsl
i
∈ Rm is input data of source domain and ysl

i
 is the corresponding label, and u 

unlabeled data, i.e. Xu
src

=
{(

xsu
i

)}n1

i=l+1
 . Similarly, there is a target domain Dtar with n2 

unlabeled examples, i.e., Xtar =
{(

xt
j

)}n2

j=1
 , and xt

j
∈ Rm . Let P and Q represent mar-

ginal distribution of two domains, P ≠ Q . Define the parameter matrix � ∈ RC×(m+1) , C 
represents the classes of data and the element 1 represents bias. The goal is to build a 
multiclass classifier f  to predict the labels corresponding to xt

i
 , the frequently-used 

notations are shown in Table 1.

(8)
⟨
z∞
i
, z∞

i

⟩
=

1

∫
0

(
�(t)Txi

)T(
�(t)Txj

)
dt = xT

i
Gxj

(9)f = argminf∈Hk
�
�
f
�
g
�
xi
��
, yi

�
+ �‖f‖2

K
+ �Df

�
DS,DT

�
+ �Rf

�
DS,DT
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3.2  Proposed Framework

The general framework of GDA includes two main regularizations: graph regulariza-
tion and MMD regularization. The framework of GDA is as follows:

where V
(
xsl
i
, ysl

i
, f
)
 represents loss function on labeled source samples, such as squared loss (

ysl
i
− f

(
xsl
i

))2 or hinge loss max
[
0, 1 − ysl

i
f
(
xsl
i

)]
 . ‖f‖2

2
 is a penalty term to reduce over-

fitting. ‖f‖2
I
 is a regularization term to reflect the geometric structure of source domain, 

it enables GDA to employs unlabeled source data to facilitate knowledge transfer across 
domains. MMD2

(
f
(
Xsrc

)
, f
(
Xtar

))
 is another regularization term aiming to measure the 

divergence between two domains and f  is the adaptable classifier. Details about GDA are 
introduced in following parts respectively.

(10)L = min�
1

l

l�
i=1

V
�
xsl
i
, ysl

i
, f
�
+ �A‖f‖22 + �B‖f‖2I + �CMMD2

�
f
�
Xsrc

�
, f
�
Xtar

��

Fig. 1  The framework of proposed GDA. A classifier is trained from the source domain to be well general-
ized to target data

Table 1  Notations and descriptions

Notations Description Notations Description

n
1
 , n

2
Examples in source and target domain l  , u Labeled and unlabeled source samples

m,C Features and classes Dsrc , Dtar Source and target domains
X
src

 , X
tar

Source and target data �A Parameter of f 2
2

�B Parameter of graph regularization �C Parameter of MMD
� Parameter matrix P , Q Marginal distribution of two domains
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3.2.1  MMD

We utilize MMD proposed by Gretton et al. [19] to compute the distance between two dif-
ferent domains, and incorporate it as one regularization term in our framework. We use 
MMD to measure the differences between two domains with respect to label information 
instead of calculating the discrepancy between two domain data, i.e. we measure the differ-
ences between f

(
Xsrc

)
 and f

(
Xtar

)
 not Xsrc and Xr . MMD incorporated with label informa-

tion is expected to derive better features with discriminative guarantees [35].
In this paper we learn a multiclass classifier refer to as f = �X based on the strategy of 

“One vs Rest”, therefore, MMD regularization can be rewritten as follows:

We use objective (11) to measure domain differences, rewrite (11) into a kernelized 
form:

One limitation of MMD is its computation complexity, which consumes too much com-
puting power. The empirical estimate is achieved by drawing paired data from source and 
target domain [19, 42], a linear-time estimate of MMD can be written as follows:

where n = min
(
n1, n2

)
 in this paper. This enables GDA to scale linearly to large-scale data, 

and k(⋅, ⋅) here represents all available kernel functions. In this paper we utilize Gaussian 

kernel with the form of k
�
x1, x2

�
= exp

�
−
‖x1−x2‖2

2�2

�
 , � is standard deviation of Gaussian 

kernel by calculating with � =

√
MSD

2
 , and MSD is the median squared distance between 

all source data [35, 43].

3.2.2  Graph Regularization

Graph Laplacian enables GDA to simultaneously utilize few labeled source data and enor-
mous unlabeled data to participate in knowledge transfer

Define the marginal distribution of source domain �src . �src is the support of �src.
When �src is a compact submanifold �src ⊂ ℝ

n , ∫
xs
j
∈�src

‖‖‖∇�src
f
‖‖‖
2

d�src

(
xs
j

)
 is a natural 

choice for ‖f‖2
I
,where ∇�src

 represents gradient of f  along �src . However, in most cases, 
the marginal distribution psrc is unknown, thus, the term ∫

xs
j
∈�src

‖‖‖∇�src
f
‖‖‖
2

d�src

(
xs
j

)
 is 

(11)

MMD2
(
f
(
Xsrc

)
, f
(
Xtar

))
= MMD2

(
�Xsrc,�Xtar

)
=

‖‖‖‖‖‖
1

n1

n1∑
i=1

�
(
�xs

i

)
−

1

n2

n2∑
j=1

�

(
�xt

j

)2

H

‖‖‖‖‖‖

(12)

MMD2
(
�Xsrc,�Xtar

)
=

1

n2
1

n1∑
i,j=1

k
(
�xs

i
,�xs

j

)
+

1

n2
2

n2∑
i,j=1

k
(
�xt

i
,�xt

j

)
−

2

n1, n2

n1,n2∑
i,j=1

k
(
�xt

i
,�xs

j

)

(13)

MMD2
(
�Xsrc,�Xtar

)
=

2

n

n∕2∑
i=1

(
k
(
�xs

2i−1
,�xs

2i

)
+ k

(
�xt

2i−1
,�xt

2i

))

−
2

n

n∕2∑
i=1

(
k
(
�xs

2i−1
,�xt

2i

)
+ k

(
�xt

2i−1
,�xs

2i

))
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hard to be computed. Given that there are rich unlabeled data in source domain, the term 
∫
xs
j
∈�src

‖‖‖∇�src
f
‖‖‖
2

d�src

(
xs
j

)
 can be estimated empirically by a graph Laplacian [44].

Firstly, we can build a graph G = (V,W) using all data of source domain, note that 
V =

{
xs
1
,… , xs

l
, xs

l+1
,… , xs

n1

}
 represents n1 vertices and each of them represents a sample 

in source domain, and W represents the affinity matrix, in this paper, we define W based on 
Gaussian kernel as follows:

where Wij is edge weight in graph G , � is standard deviation of Gaussian kernel by calculat-
ing with � =

√
MSD

2
 . Np(x) are p-nearest neighbors of instance x.

Then, ∫
xs
j
∈�src

‖‖‖∇�src
f
‖‖‖
2

d�src

(
xs
j

)
 can be approximated on the basis of labeled and 

unlabeled source data in following form:

where � =
[
f
(
xs
1

)
,… , f

(
xs
l

)
, f
(
xs
l+1

)
,… , f

(
xs
n1

)]T
 , and L is the graph Laplacian computed 

by L = D −W , the diagonal matrix D is calculated by Dii =
n1∑
j=1

Wij.

Based on graph Laplacian, GDA can employ all source data to exploit more comprehen-
sive prior knowledge.

Through discussion above, we finally need to settle the minimization problem as 
follows:

where V
(
xsl
i
, ysl

i
, f
)
 represents loss function on the available labeled source samples, the 

term �TL� reflects the geometric structure of source domain empirically, and the term 
MMD2

(
�Xsrc,�Xtar

)
 measures the distance between two domains, �A is parameter of ‖f‖2

2
 

to control the complexity of classifier, �B , �C are graph regularization and MMD regulariza-
tion parameters respectively.

4  Optimization Algorithms

In the implementation, there are different choices of loss function V
(
xsl
i
, ysl

i
, f
)
 . In 

this paper, we choose simple least squares to verify the effectiveness of GDA, i.e. 
V
(
xsl
i
, ysl

i
, f
)
=
(
ysl
i
− f

(
xsl
i

))2 . The goal of GDA is to build a multiclass classifier f = �X . 
The minimization problem (16) can be rewritten as (17), and we propose gradient descent 
to solve the problem (17).

(14)Wij =

⎧⎪⎨⎪⎩

exp

�
−xs

i
−xs2

j2

2�2

�
xs
i
∈ Np

�
xs
j

�
∪ xs

j
∈ Np

�
xs
i

�

0 else

(15)∫xs
j
∈�src

‖‖‖∇�src
f
‖‖‖
2

d�src

(
xs
j

)
≃

l+u∑
i,j=1

(
f
(
xs
i

)
− f

(
xs
j

))2

Wij = �
TL�

(16)L = min�
1

l

l�
i=1

V
�
xsl
i
, ysl

i
, f
�
+ �A‖f‖22 + �B�

TL� + �CMMD2
�
�Xsrc,�Xtar

�
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According to (13), the gradient of k
(
𝚯x∗

2i−1
,𝚯x∗

2i

)
 with respect to � is:

where the mark “*” represent source or target domain.
Now the gradient of MMD function (13) with respect to � is:

We cast minimization problem (17) into a brief form as follows:

where denote J  as follows:

objective (21) represents graph regularized learning on source domain, the gradient of J  
with respect to � is computed in the matrix form as follows:

combine (19) and (22), the gradient of L with respect to � is:

4.1  Computation Complexity

We analyze the computation complexity of Algorithm 1 utilizing big O notation, for clarity, 
we set iteration number T = 1 , the major computation cost exists step 1 and step 3, step 1 
costs O

(
m
(
n1
)2) for building graph, step 3 costs O

(
m
(
n1 + n2

))
 for gradient descent, the 

total computation complexity is O
(
m
(
n1
)2

+ m
(
n1 + n2

))
.

(17)

L = min�
1

l

l�
i=1

�
ysl
i
−�xsl

i

�2
+ �A‖�‖2

2
+ �B

�
�Xsrc

�T
L
�
�Xsrc

�
+ �CMMD2

�
�Xsrc,�Xtar

�

(18)
Gra(∗,∗) = −

1

�2
exp

(
−
(
𝚯x∗

2i−1
−𝚯x∗

2i

)T(
𝚯x∗

2i−1
−𝚯x∗

2i

))

2�2

((
x∗
2i−1

− x∗
2i

)(
x∗
2i−1

− x∗
2i

)T
𝚯

T
)

(19)GraMMD =
dMMD2

d�
=

2

n

(
n∕2∑
i=1

(
Gra(s,s) + Gra(t,t)

))
−

2

n

n∕2∑
i=1

(
Gra(s,t) + Gra(t,s)

)

(20)L = min�
(
J + �CMMD2

(
�Xsrc,�Xtar

))

(21)J =
1

l

l�
i=1

�
ysl
i
−�xsl

i

�2
+ �A‖�‖2

2
+ �B

�
�Xsrc

�T
L
�
�Xsrc

�

(22)Gras =
dJ

d�
=

2

l

(
�Xsl − Ysl

)(
Xsl

)T
+ 2�A� + 2�B�XsrcLX

T
src

(23)∇
�
=

dL

d�
= Gras + �CGraMMD
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5  Experiment and Analysis

In this section, we perform several experiments on different types of datasets to verify the 
performance of GDA.

5.1  Experiment Setup

We use USPS + MNIST, COIL20, Office + Caltech-256 datasets (refer to Table  2 and 
Fig. 2) to evaluate the GDA method.

USPS contains 7129 training examples and 2007 testing examples, and MNIST consists 
of 60,000 training examples and 10,000 testing examples, COIL20 has 20 object classes 
with 1440 images, there are 72 images in each object class. COIL20 is partitioned into two 
relatively different subsets COIL1, COIL2, each of them contains 720 images with differ-
ent taken directions, in these two experiments, we use the preprocessed datasets released 
by Long et al. [45].

Office-31 [40, 46] consists of three object domains, Amazon, Webcam, and DSLR. 
Amazon contains single centered objects, whereas Webcam and DSLR are obtained 
in different background settings. It contains 4652 examples totally and 31 categories. 
Caltech-256 [47] has 30607 images and 256 classes. In this experiment we use 10 object 
classes published by Gong et al. [40].

Table 2  Five basic datasets Dataset Type Examples Features Classes Subset

MNIST Digit 1800 256 10 MNIST
USPS Digit 2000 256 10 USPS
COIL20 Object 1440 1024 20 COIL1 COIL2
Office Object 1410 800 10 A, W, D
Caltech-256 Object 1123 800 10 C
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5.2  Baseline Methods

In order to determine how MMD regularization and graph regularization affect knowl-
edge transfer between domain, we compare the other three methods without MMD reg-
ularization or graph regularization or both regularizations, i.e., classifier M1 −M3 . In 
order to test the validity of GDA, we compare GDA with TCA and GFK two domain 
adaptation algorithms. The baseline methods are summarized as follows:

• 

• 

• 

• Transfer Component Analysis (TCA) [17]
• Geodesic Flow Kernel (GFK) [40]

In order to compare fairly, each item of comparison method is trained based on 
labeled source data and tested on target data.

We present the differences among these comparison models in following discussions 
and demonstrate that GDA outperforms other algorithms when there are few labeled 
source samples.
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Fig. 2  USPS (the top row of the first picture), MNIST (the bottom row of the first picture), COIL20, Office, 
Caltech-256
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5.3  Implementation Details

Under the experimental setup, we fix the learning rate α = 0.01, iteration number T = 10, 
the number of neighbors is fixed to 7 empirically, given that there is no label informa-
tion accessible in target domain, it is impossible to choose the optimal parameters by 
cross validation. Therefore, we evaluate the optimal parameters for comparison methods 
by searching the parameter space and report the best results. For M1 , M2 , M3 and GDA, 
we determine �A , �B , �C by searching in a range of [0.001, 10] , and the best results are {
�A, �B, �C

}
= {0.01, 9, 0.01} for digit datasets, 

{
�A, �B, �C

}
= {0.01, 0.3, 10} for COIL20 

datasets, and 
{
�A, �B, �C

}
= {0.5, 0.005, 0.3} for Office + Caltech-256 datasets. For TCA 

and GFK, the optimal dimension is set by searching dim ∈ [20, 40, 50, 60, 90].
We use classification accuracy on target data to evaluate different models as [32, 40, 

45].

We set USPS as source domain and MNIST as target domain in our experiment, 
there are four domains in Office + Caltech-256 datasets, we construct six cross-domain 
tasks, i.e. D → W  , A → W  , A → D , A → C,W → C , D → C . In order to study the per-
formance of GDA, we randomly assign certain parts of source data as labeled samples 
and the remaining are unlabeled, i.e. 5%, 10% 25%, 50% of source domain are sampled 
as labeled data.

5.4  Experiment Results and Analysis

The results averaged by 5 repeated runs on eight different transfer tasks are visualized in 
corresponding Fig. 3.

Firstly, we find that GDA has better performance than other comparison models 
when the number of labeled source samples is small. It means that GDA can imple-
ment knowledge transfer across domains effectively even there is not enough label infor-
mation in source domain, whereas traditional domain adaptation (i.e. TCA and GFK) 
methods can only achieve good performance with a hypothesis that source domain pos-
sesses rich labeled data, which may be not available in many scenarios, therefore, GDA 
is more applicable in realistic scenes.

Secondly, from the results, we observe that M1 and M2 perform poor on eight domain 
adaptation tasks. This is mainly because both two models treat all examples from dif-
ferent domains as they are generated from identical distribution. One interesting experi-
mental phenomenon deserves our attention, when there are few labeled source data, M2 
achieves better performance than M1 (e.g. 5%), that means too sparse prior knowledge 
is not enough to support knowledge transfer. However, with the increase of label infor-
mation, M1 performs better than M2 gradually (e.g. 50%). A reasonable explanation is 
that when labeled source data are sparse, the shared knowledge is not extracted enough 
and graph Laplacian makes unlabeled source data participate in learning, as a result, 
more comprehensive shared knowledge can be extracted. While as the label information 
increasing, source classifier becomes more accurate and graph Laplacian strengthens 

(24)Accuracy
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the source classifier, so that source classifier learns more domain-specific knowledge, 
i.e., causing bias to source domain, which brings difficulties in generalizing source 
learnt classifier to target domain.

Thirdly, comparing M3 with M1 , we can find that M3 perform much better that M1 , the 
main reason is that MMD is incorporated in M3 , therefore, the distribution discrepancy 
is reduced, the source classifier can be more adaptable to target domain.

Fig. 3  Accuracy (%) on eight cross-datasets for six models with different labeled source data



36 J. Li et al.

1 3

Lastly, although GDA performs better than other comparison methods when sparse 
label information exists in source domain, when rich source label information is avail-
able, GDA performs poor compared to M3 , TCA and GFK (e.g. 50%). Combined with 
the second analysis when there are few labeled source data, because graph Laplacian 
enables GDA to employ unlabeled data to assist knowledge transfer, i.e., extracting 
some prior knowledge from unlabeled source data. However, as the labeled data grow-
ing, source classifier becomes more accurate while graph Laplacian makes source clas-
sifier stronger to learn much more domain-specific information, which is not favorable 
in transfer learning, thus, when label information increases, GDA performs relatively 
poor than M3 , TCA and GFK.

It is noteworthy that GDA is more efficient than other models when only few labeled 
source data are available. This means better results can still be achieved without large-
scale labeled source data. It is the major difference between GDA and other transfer 
learning frameworks.

5.5  Parameter Sensitivity

There are three key parameters in GDA, i.e., �A, �B, �C . We analyze parameter sensitiv-
ity on three datasets, including A vs W, COIL1 vs COIL2, USPS vs MNIST. The aver-
age classification accuracy is computed on three datasets. The results are illustrated in 
Fig. 4.

We test GDA with one of three parameters while the other two param-
eters are fixed, three parameters are analyzed with a wide range 
[0.001, 0.003, 0.005, 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 7, 9, 10] . From the plot, we observe 
that GDA is relatively stable algorithm.

Fig. 4  Parameter sensitivity on three datasets
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6  Conclusion

Domain adaptation has attracted lots of attention and achieved promising performance 
in many applications. In this paper, we propose a method named Graph Regularized 
Domain Adaptation (GDA). Most existing transfer learning methods rely on large-scale 
labeled source data, however, GDA focuses on the case where only few labeled data 
exist in source domain. Specifically, GDA can build a classifier to predict target labels 
by integrating graph regularization with maximum mean discrepancy (MMD). A major 
advantage of GDA is that it can employ the geometric property of source domain to 
extract knowledge from unlabeled source data. Extensive experiments demonstrate that 
GDA outperforms baseline algorithms when there are few labeled source samples.
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